Beth Israel Deaconess Medical Center



HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

# SARS-CoV-2 Vaccine

Noe Mercado

Beth Israel Deaconess Medical Center

March 25<sup>th</sup> 2021







Noe Mercado, a scientist at the Center for Virology and Vaccine Research in Boston, which is developing a coronavirus vaccine with Johnson & Johnson. Tony Luong for The New York Times

Published July 17, 2020

Beth Israel Lahey Health Beth Israel Deaconess Medical Center

Johnson 4 Johnson

- Mosaic HIV-1 Vaccine in large scale phase 2b trial in Africa and Phase 3 efficacy trial in the Americas and Europe
- (Ad26.ZIKV.001) Zika virus vaccine completed phase 1 clinical trial
- SARS-CoV-2 vaccine FDA approved



# Severe Acute Respiratory Syndrome 2 (SARS-CoV-2)

- Positive sense single stranded RNA virus with a single linear RNA segment
- Genome size ~30kb
- Main focus for vaccination strategies is spike protein
- SARS-CoV-2 utilizes ACE2 receptors distributed predominantly in epithelial cells of lung and small intestines



# **How Viral** Vector COVID-19 Vaccines Work



- Vector based vaccines have been used since the 1970s
- Replication-incompetent, safe and immunogenic
- Vector technology has been applied to develop vaccine candidates against ZIKA, HIV, Flu, and Ebola

#### **GETTING VACCINATED?**

For information about COVID-19 vaccine, visit cdc.gov/coronavirus/vaccines



#### SHARE RESEARCH ARTICLE

# SARS-CoV-2 infection protects against rechallenge in rhesus macaques

Abishek Chandrashekar<sup>1,\*</sup>, <sup>(i)</sup> Jinyan Liu<sup>1,\*</sup>, <sup>(i)</sup> Amanda J. Martinot<sup>1,2,\*</sup>, <sup>(i)</sup> Katherine McMahan<sup>1,\*</sup>, <sup>(i)</sup> Noe B. Mercado<sup>1,\*</sup>,
Lauren Peter<sup>1,\*</sup>, <sup>(i)</sup> Lisa H. Tostanoski<sup>1,\*</sup>, <sup>(i)</sup> Jingyou Yu<sup>1,\*</sup>, <sup>(i)</sup> Zoltan Maliga<sup>3</sup>, Michael Nekorchuk<sup>4</sup>, <sup>(i)</sup> Kathleen Busman-Sahay<sup>4</sup>, <sup>(i)</sup> Margaret Terry<sup>4</sup>, <sup>(i)</sup> Linda M. Wrijil<sup>2</sup>, <sup>(i)</sup> Sarah Ducat<sup>2</sup>, David R. Martinez<sup>5</sup>, <sup>(i)</sup> Caroline Atyeo<sup>3,6</sup>, <sup>(i)</sup> Stephanie Fischinger<sup>6</sup>, <sup>(i)</sup> John S. Burke<sup>6</sup>, <sup>(i)</sup> Matthew D. Slein<sup>6</sup>, <sup>(i)</sup> Laurent Pessaint<sup>7</sup>, <sup>(i)</sup> Alex Van Ry<sup>7</sup>, <sup>(i)</sup> Jack Greenhouse<sup>7</sup>, <sup>(i)</sup> Tammy Taylor<sup>7</sup>, <sup>(i)</sup> Kelvin Blade<sup>7</sup>, Anthony Cook<sup>7</sup>, <sup>(i)</sup> Brad Finneyfrock<sup>7</sup>, Renita Brown<sup>7</sup>, Elyse Teow<sup>7</sup>, Jason Velasco<sup>7</sup>, <sup>(i)</sup> Roland Zahn<sup>8</sup>, <sup>(i)</sup> Frank Wegmann<sup>8</sup>, <sup>(i)</sup> Peter Abbink<sup>1</sup>, <sup>(i)</sup> Esther A. Bondzie<sup>1</sup>, <sup>(i)</sup> Gabriel Dagotto<sup>1,3</sup>, <sup>(i)</sup> Makda S. Gebre<sup>1,3</sup>, Xuan He<sup>1</sup>, <sup>(i)</sup> Catherine Jacob-Dolan<sup>1,3</sup>, <sup>(i)</sup> Nicole Kordana<sup>1</sup>, Zhenfeng Li<sup>1</sup>, <sup>(i)</sup> Michelle A. Lifton<sup>1</sup>, <sup>(i)</sup> Shant H. Mahrokhian<sup>1</sup>, <sup>(i)</sup> Lori F. Maxfield<sup>1</sup>, <sup>(i)</sup> Ramya Nityanandam<sup>1</sup>, <sup>(i)</sup> Joseph P. Nkolola<sup>1</sup>, <sup>(i)</sup> Aaron G. Schmidt<sup>6,9</sup>, <sup>(i)</sup> Andrew D. Miller<sup>10</sup>, <sup>(i)</sup> Ralph S. Baric<sup>5</sup>, <sup>(i)</sup> Galit Alter<sup>6,9</sup>, <sup>(i)</sup> Peter K. Sorger<sup>3</sup>, <sup>(i)</sup> Jacob D. Estes<sup>4</sup>, <sup>(i)</sup> Hanne Andersen<sup>7</sup>, <sup>(i)</sup> Mark G. Lewis<sup>7</sup>, <sup>(i)</sup> Dan H. Barouch<sup>1,6,9,†</sup>



Science Vol 369, Issue 6505 14 August 2020

Table of Contents Print Table of Contents Advertising (PDF) Classified (PDF) Masthead (PDF)

#### ARTICLE TOOLS

| $\sim$ | Email  |
|--------|--------|
| -      | Print  |
| 4      | Alerts |
| -      | Share  |

Download Powerpoint
 Request Permissions
 Citation tools

in

0

 $\square$ 

Rhesus macaques were inoculated by the IN and IT routes  $1.1 \times 10^6$  PFU (Group 1; N = 3)  $1.1 \times 10^5$  PFU (Group 2; N = 3)  $1.1 \times 10^4$  PFU (Group 3; N = 3)



• High antibody titers are elicited post initial challenge

Chandrashekar et al. Science (2020)



• Immunity acquired through initial infection protects against future challenge in rhesus macaques



 Generate DNA vaccines expressing different versions of spike protein

Lysate



## Supernatant





- Vaccine Dose: 5mg IM
- Challenge dose:  $1.1 \times 10^4$  PFU

# Article

# Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques



https://doi.org/10.1038/s41586-020-2607-z

Received: 20 June 2020

Accepted: 24 July 2020

Published online: 30 July 2020

Check for updates

Noe B. Mercado<sup>1,10</sup>, Roland Zahn<sup>2,10</sup>, Frank Wegmann<sup>2,10</sup>, Carolin Loos<sup>3,4,10</sup>, Abishek Chandrashekar<sup>1,10</sup>, Jingyou Yu<sup>1,10</sup>, Jinyan Liu<sup>1,10</sup>, Lauren Peter<sup>1,10</sup>, Katherine McMahan<sup>1,10</sup>, Lisa H. Tostanoski<sup>1,10</sup>, Xuan He<sup>1,10</sup>, David R. Martinez<sup>5,10</sup>, Lucy Rutten<sup>2</sup>, Rinke Bos<sup>2</sup>, Danielle van Manen<sup>2</sup>, Jort Vellinga<sup>2</sup>, Jerome Custers<sup>2</sup>, Johannes P. Langedijk<sup>2</sup>, Ted Kwaks<sup>2</sup>, Mark J. G. Bakkers<sup>2</sup>, David Zuijdgeest<sup>2</sup>, Sietske K. Rosendahl Huber<sup>2</sup>, Caroline Atyeo<sup>3,6</sup>, Stephanie Fischinger<sup>3,6</sup>, John S. Burke<sup>3</sup>, Jared Feldman<sup>3,6</sup>, Blake M. Hauser<sup>3,6</sup>, Timothy M. Caradonna<sup>3,6</sup>, Esther A. Bondzie<sup>1</sup>, Gabriel Dagotto<sup>1,6</sup>, Makda S. Gebre<sup>1,6</sup>, Emily Hoffman<sup>1</sup>, Catherine Jacob-Dolan<sup>1,6</sup>, Marinela Kirilova<sup>1</sup>, Zhenfeng Li<sup>1</sup>, Zijin Lin<sup>1</sup>, Shant H. Mahrokhian<sup>1</sup>, Lori F. Maxfield<sup>1</sup>, Felix Nampanya<sup>1</sup>, Ramya Nityanandam<sup>1</sup>, Joseph P. Nkolola<sup>1</sup>, Shivani Patel<sup>1</sup>, John D. Ventura<sup>1</sup>, Kaylee Verrington<sup>1</sup>, Huahua Wan<sup>1</sup>, Laurent Pessaint<sup>7</sup>, Alex Van Ry<sup>7</sup>, Kelvin Blade<sup>7</sup>, Amanda Strasbaugh<sup>7</sup>, Mehtap Cabus<sup>7</sup>, Renita Brown<sup>7</sup>, Anthony Cook<sup>7</sup>, Serge Zouantchangadou<sup>7</sup>, Elyse Teow<sup>7</sup>, Hanne Andersen<sup>7</sup>, Mark G. Lewis<sup>7</sup>, Yongfei Cai<sup>8</sup>, Bing Chen<sup>8,9</sup>, Aaron G. Schmidt<sup>3,6,9</sup>, R. Keith Reeves<sup>1</sup>, Ralph S. Baric<sup>5</sup>, Douglas A. Lauffenburger<sup>4</sup>, Galit Alter<sup>3,9</sup>, Paul Stoffels<sup>2</sup>, Mathai Mammen<sup>2</sup>, Johan Van Hoof<sup>2</sup>, Hanneke Schuitemaker<sup>2,11</sup> & Dan H. Barouch<sup>1,3,6,9,11</sup>

# Adenovirus vector based SARS-CoV-2 Vaccine



- Seven vaccines were designed in collaboration with Janssen (Johnson & Johnson)
- Recombinant Adenovirus Serotype 26 as delivery platform
  - Immunized rhesus monkeys, then challenge with SARS-CoV-2



 Vaccine candidates elicited high levels of binding and neutralizing antibody titers

Week 0

Week 4





• Full protection in the lower respiratory tract and near full protection in the upper respiratory tract



Subscribe Articles For Authors About the Journal

Vaccines and Antiviral Agents

#### Comparison of Subgenomic and Total RNA in SARS-CoV-2 Challenged Rhesus Macaques

search

Gabriel Dagotto, Noe B. Mercado, David R. Martinez, Yixuan J. Hou, Joseph P. Nkolola, Robert H. Carnahan, James E. Crowe Jr, Ralph S. Baric, Dan H. Barouch

DOI: 10.1128/JVI.02370-20

| Article                                                                        | Info & Metrics                                                                                                                                                                                                                                              | D PDF                                                                                                                                                                            |                                                                     |                                                              |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|
| ABSTRACT<br>Respiratory                                                        | virus challenge studies involve administration o                                                                                                                                                                                                            | the challenge virus and sampling     transformer be difficult to                                                                                                                 | Download PDF<br>Citation Tools<br>Print<br>Reprints and Permissions | <ul> <li>Alerts</li> <li>➡ Email</li> <li>➡ Share</li> </ul> |
| differentiate                                                                  | actively replicating virus from input challenge vi                                                                                                                                                                                                          | rus. For SARS-CoV-2, specific                                                                                                                                                    |                                                                     |                                                              |
| monitoring o<br>efficacy of va<br>subgenomic<br>or neutralize<br>incorporate i | f actively replicating virus is critical to investigat<br>accines, monoclonal antibodies, and antiviral dr<br>RNA (sgRNA) RT-PCR assay to differentiate p<br>d virus. Subgenomic RNAs are generated after<br>nto mature virions, and thus may provide a man | e the protective and therapeutic<br>ugs. We developed a SARS-CoV-2<br>oductive infection from inactivated<br>cell entry and are poorly<br>ker for actively replicating virus. We | Top<br>) Article<br>) Info & Metrics<br>) D PDF                     |                                                              |
| show envelo                                                                    | pe (E) sgRNA was degraded by RNase in infec                                                                                                                                                                                                                 | ted cell lysates, while genomic RNA                                                                                                                                              | Related Articles                                                    |                                                              |

(gRNA) was protected, presumably due to packaging into virions. To investigate the capacity of the sqRNA assay to distinguish input challenge virus from actively replicating virus in vivo, we compared the E sgRNA assay to a standard nucleoprotein (N) or E total RNA assay in convalescent rhesus macaques and in antibody-treated rhesus macaques after experimental 

#### Article

## **Correlates of protection against SARS-CoV-2** in rhesus macaques

https://doi.org/10.1038/s41586-020-03041-6 Received: 5 September 2020 Accepted: 25 November 2020 Published online: 4 December 2020 Check for updates

Katherine McMahan<sup>17</sup>, Jingyou Yu<sup>17</sup>, Noe B, Mercado<sup>17</sup>, Carolin Loos<sup>2,37</sup>, Lisa H, Tostanoski<sup>17</sup>, Abishek Chandrashekar<sup>1,7</sup>, Jinyan Liu<sup>1,7</sup>, Lauren Peter<sup>1,7</sup>, Caroline Atyeo<sup>2,4</sup>, Alex Zhu<sup>2</sup>, Esther A. Bondzie<sup>1</sup>, Gabriel Dagotto<sup>1,4</sup>, Makda S. Gebre<sup>1,4</sup>, Catherine Jacob-Dolan<sup>1,4</sup>, Zhenfeng Li<sup>1</sup>, Felix Nampanya<sup>1</sup>, Shivani Patel<sup>1</sup>, Laurent Pessaint<sup>5</sup>, Alex Van Ry<sup>5</sup>, Kelvin Blade<sup>5</sup>, Jake Yalley-Ogunro<sup>5</sup>, Mehtap Cabus<sup>5</sup>, Renita Brown<sup>5</sup>, Anthony Cook<sup>5</sup>, Elyse Teow<sup>5</sup>, Hanne Andersen<sup>5</sup>, Mark G. Lewis<sup>5</sup>, Douglas A. Lauffenburger<sup>3</sup>, Galit Alter<sup>2,6</sup> & Dan H. Barouch<sup>1,2,4,6</sup>

Recent studies have reported the protective efficacy of both natural<sup>1</sup> and vaccine-induced<sup>2-7</sup> immunity against challenge with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in rhesus macaques. However, the importance of humoral and cellular immunity for protection against infection with SARS-CoV-2 remains to be determined. Here we show that the adoptive transfer of purified IgG from convalescent rhesus macaques (Macaca mulatta) protects naive recipient macaques against challenge with SARS-CoV-2 in a dose-dependent fashion. Depletion of CD8<sup>+</sup>T cells in convalescent macaques partially abrogated the protective efficacy of natural immunity against rechallenge with SARS-CoV-2, which suggests a role for cellular immunity in the context of waning or subprotective antibody titres. These data demonstrate that relatively low antibody titres are sufficient for protection against SARS-CoV-2 in rhesus macaques, and that cellular immune responses may contribute to protection if antibody responses are suboptimal. We also show that higher antibody titres are required for treatment of SARS-CoV-2 infection in macaques. These findings have implications for the development of SARS-CoV-2 vaccines and immune-based therapeutic agents.

Abdominal Radiology https://doi.org/10.1007/s00261-020-02753-7

Adva

No related articles found.

PubMed Google Scholar

INTERVENTIONAL RADIOLOGY

#### Feasibility and safety of ultrasound-guided minimally invasive autopsy in COVID-19 patients

Olga R. Brook<sup>1</sup> · Kimberly G. Piper<sup>2</sup> · Noe B. Mercado<sup>3</sup> · Makda S. Gebre<sup>3</sup> · Dan H. Barouch<sup>3</sup> Kathleen Busman-Sahay<sup>4</sup> · Carly E. Starke<sup>4</sup> · Jacob D. Estes<sup>4</sup> · Amanda J. Martinot<sup>3,5</sup> · Linda Wrijil<sup>5</sup> · Sarah Ducat<sup>5</sup> · Jonathan L. Hecht<sup>6</sup>

Received: 24 July 2020 / Revised: 30 August 2020 / Accepted: 3 September 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

#### Abstract

Objectives To determine the feasibility and safety of ultrasound-guided minimally invasive autopsy in COVID-19 patients. Methods 60 patients who expired between 04/22/2020-05/06/2020 due to COVID-19 were considered for inclusion in the study, based on availability of study staff. Minimally invasive ultrasound-guided autopsy was performed with 14G core biopsies through a 13G coaxial needle. The protocol required 20 cores of the liver, 30 of lung, 12 of spleen, 20 of heart, 20 of kidney, 4 of breast, 4 of testis, 2 of skeletal muscle, and 4 of fat with total of 112 cores per patient. Quality of the samples was evaluated by number, size, histology, immunohistochemistry, and in situ hybridization for COVID-19 and PCR-measured

Results Five (5/60, 8%) patients were included. All approached families gave their consent for the minimally invasive autopsy. All organs for biopsy were successfully targeted with ultrasound guidance obtaining all required samples, apart from 2 patients where renal samples were not obtained due to atrophic kidneys. The number, size, and weight of the tissue cores met expectation of the research group and tissue histology quality was excellent. Pathology findings were concordant morted autoney findings for COVID-10. Highest SARS-CoV-2 viral load use detected in the lung liver

#### Article

viral loads for SARS-CoV-2.

### Potently neutralizing and protective human antibodies against SARS-CoV-2

| https://doi.org/10.1038/s4  | 1586-020-2548-6 |
|-----------------------------|-----------------|
| Received: 19 May 2019       |                 |
| Accepted: 7 July 2020       |                 |
| Published online: 15 July 2 | 020             |
| Check for updates           |                 |

ost<sup>1,15</sup>, Pavlo Gilchuk<sup>1,15</sup>, James Brett Case<sup>2</sup>, Elad Binshtein<sup>1</sup>, Rita E. Chen<sup>2,1</sup> Nkolola<sup>4</sup>, Alexandra Schäfer<sup>5</sup>, Joseph X. Reidy<sup>1</sup>, Andrew Trivette<sup>1</sup>, Rachel S. Nargi<sup>1</sup>, . Sutton<sup>1</sup>, Naveenchandra Suryadevara<sup>1</sup>, David R. Martinez<sup>5</sup>, Lauren E. Williamson<sup>6</sup>, Chen<sup>6</sup>, Taylor Jones<sup>1</sup>, Samuel Day<sup>1</sup>, Luke Myers<sup>1</sup>, Ahmed O. Hassan<sup>2</sup>, M. Kafai<sup>2,3</sup>, Emma S. Winkler<sup>2,3</sup>, Julie M. Fox<sup>2</sup>, Swathi Shrihari<sup>2</sup>, Benjamin K. Mueller<sup>7</sup> iler<sup>7,8</sup>, Abishek Chandrashekar<sup>4</sup>, Noe B. Mercado<sup>4</sup>, James J. Steinhardt<sup>9</sup>, Kuishu Ren<sup>10</sup> ng Loo<sup>10</sup>, Nicole L. Kallewaard<sup>10</sup>, Broc T. McCune<sup>2</sup>, Shamus P. Keeler<sup>2,1</sup> J. Holtzman<sup>2,11</sup>, Dan H. Barouch<sup>4</sup>, Lisa E. Gralinski<sup>5</sup>, Ralph S. Baric<sup>5</sup>, Larissa B. Thackray<sup>2</sup>, Michael S. Diamond<sup>2,3,12,13</sup>, Robert H. Carnahan<sup>1,14</sup> & James E. Crowe Jr<sup>1,6,14</sup>

The ongoing pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health1 and the medical countermeasures available so far are limited23 Moreover, we currently lack a thorough understanding of the mechanisms of humoral immunity to SARS-CoV-24. Here we analyse a large panel of human monoclonal antibodies that target the spike (S) glycoprotein5, and identify several that exhibit potent neutralizing activity and fully block the receptor-binding domain of the S protein (S<sub>RRD</sub>) from interacting with human angiotensin-converting enzyme 2 (ACE2), Using competition-binding, structural and functional studies, we show that the monoclonal antibodies can be clustered into classes that recognize distinct epitopes on the  $S_{\mbox{\tiny RBD}}$  as well as distinct conformational states of the S trimer. Two potently neutralizing monoclonal antibodies, COV2-2196 and COV2-2130, which recognize non-overlapping sites, bound simultaneously to the S protein and neutralized wild-type SARS-CoV-2 virus in a synergistic manner. In two mouse models of SARS-CoV-2 infection, passive transfer of COV2-2196, COV2-2130 or a combination of both of these antibodies protected mice from weight loss and reduced the viral burden and levels of inflammation in the lungs. In addition, passive transfer of either of two of the most potent ACE2-blocking monoclonal antibodies (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on the SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic agents.

### LETTERS

Check fo

#### https://doi.org/10.1038/s41591-020-1070-6

medicine Check for update

## **OPEN**

## Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters

Lisa H. Tostanoski <sup>(3)</sup><sup>1,10</sup>, Frank Wegmann <sup>(3)</sup><sup>2,10</sup>, Amanda J. Martinot <sup>(3)</sup><sup>1,3,10</sup>, Carolin Loos <sup>(3)</sup><sup>4,5,10</sup>. Katherine McMahan<sup>1,10</sup>, Noe B. Mercado (1,10, Jingyou Yu<sup>1,10</sup>, Chi N. Chan (6, Stephen Bondoc<sup>6</sup>, Carly E. Starke<sup>6</sup>, Michael Nekorchuk<sup>6</sup>, Kathleen Busman-Sahay<sup>10</sup>, Cesar Piedra-Mora<sup>1,3</sup>, Linda M. Wrijil<sup>®3</sup>, Sarah Ducat<sup>®3</sup>, Jerome Custers<sup>2</sup>, Caroline Atyeo<sup>4,7</sup>, Stephanie Fischinger<sup>®4,7</sup>, John S. Burke<sup>1</sup>, Jared Feldman<sup>4,7</sup>, Blake M. Hauser<sup>1,4,7</sup>, Timothy M. Caradonna<sup>4,7</sup>, Esther A. Bondzie<sup>1</sup>, Gabriel Dagotto 1017, Makda S. Gebre<sup>1,7</sup>, Catherine Jacob-Dolan 1017, Zijin Lin<sup>1</sup>, Shant H. Mahrokhian 101, Felix Nampanya<sup>1</sup>, Ramya Nityanandam<sup>1</sup>, Laurent Pessaint<sup>8</sup>, Maciel Porto<sup>8</sup>, Vaneesha Ali<sup>8</sup>, Dalia Benetiene<sup>8</sup>, Komlan Tevi<sup>8</sup>, Hanne Andersen<sup>1</sup><sup>8</sup>, Mark G. Lewis<sup>8</sup>, Aaron G. Schmidt<sup>4,7,9</sup> Douglas A. Lauffenburger <sup>5</sup>, Galit Alter <sup>4,9</sup>, Jacob D. Estes<sup>6</sup>, Hanneke Schuitemaker<sup>2</sup>, <sup>−</sup> ind Zahn<sup>®2</sup> and Dan H. Barouch<sup>®1,4,7,9</sup> ⊠

navirus disease 2019 (COVID-19) in humans is often a ally mild illness, but some individuals develop severe monia, respiratory failure and death1-4. Studies of severe rally reported mild clinical disease, and preclinical -CoV-2 vaccine studies have demonstrated reduction of replication in the upper and lower respiratory tracts in uman primates11-13. Here we show that high-dose intrana-ARS-CoV-2 infection in hamsters results in severe clinical se, including high levels of virus replication in tissues, sive pneumonia, weight loss and mortality in a subset of als. A single immunization with an adenovirus serotype ctor-based vaccine expressing a stabilized SARS-CoV-2 protein elicited binding and neutralizing antibody onses and protected against SARS-CoV-2-induced ht loss, pneumonia and mortality. These data demona vaccine protection against SARS-CoV-2 clinical dis-This model should prove useful for preclinical studies of -CoV-2 vaccines, therapeutics and pathogenesis.

RS-CoV-2 can infect nonhuman primates8-10, hamsters5-7, fer-<sup>16</sup>, hACE2 transgenic mice<sup>17,18</sup> and other species<sup>16</sup>, but clinical ie in these models has generally been mild. A severe pneumoodel would be useful for preclinical evaluation of SARS-CoV-2 ies and other countermeasures, because SARS-CoV-2 infecn humans can lead to severe clinical disease, respiratory failure nortality1-4. We assessed the clinical and virologic characterof high-dose SARS-CoV-2 infection in hamsters and evaluhe protective efficacy of an adenovirus serotype 26 (Ad26)

vector-based vaccine19 encoding a stabilized SARS-CoV-2 spike (S) in this stringent model.

We inoculated 20 Syrian golden hamsters (10-12 weeks old) with respiratory syndrome coronavirus 2 (SARS-CoV-2)  $5 \times 10^4$  50% tissue culture infective dose (TCID<sub>50</sub>) (n=4; low-dose) tion in hamsters<sup>5-7</sup> and nonhuman primates<sup>8-10</sup> have or  $5 \times 10^5$  TCID<sub>50</sub> (n=16; high-dose) SARS-CoV-2 by the intranasal route. In the high-dose group, four animals were necropsied on day 2, four animals were necropsied on day 4 for tissue viral loads and histopathology and the remaining eight animals were followed longitudinally. All remaining animals were necropsied on day 14. In the low-dose group, hamsters lost a median of 14.7% of body weight by day 6 but fully recovered by day 14 (Fig. 1a,b), consistent with previous studies5-7. In the high-dose group, hamsters lost a median of 19.9% of body weight by day 6. Of the eight animals in this group that were followed longitudinally, four met Institutional Animal Care and Use Committee humane euthanasia criteria of more than 20% weight loss and respiratory distress on day 6, and two additional animals met these criteria on day 7. The remaining two animals recovered by day 14. These data demonstrate that high-dose SARS-CoV-2 infection in hamsters led to severe weight loss and partial mortality.

Tissue viral loads were assessed in the four animals that received high-dose SARS-CoV-2 and were necropsied on day 2, the four animals that were necropsied on day 4 and five of six of the animals that met euthanasia criteria on days 6-7 (Fig. 1c). High median tissue viral loads on day 2 of 1012 RNA copies per gram in lung tissue and 108-109 RNA copies per gram in nares and trachea were observed, with a median of 105-108 RNA copies per gram in heart, gastrointestinal tract, brain, spleen, liver and kidney, indicative of disseminated infection. By days 6-7, tissue viral loads were approximately 2 logs lower, despite continued weight loss.

| oi.org/10.1038/s41586-020-2548-6 | Seth J. Zo           |
|----------------------------------|----------------------|
| : 19 May 2019                    | Joseph P<br>Rachel E |
| d: 7 July 2020                   | Elaine C.            |
| d online: 15 July 2020           | Natasha<br>Jens Mei  |
| k for updates                    | Yueh-Mi<br>Michael   |

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

# Interim Results of a Phase 1–2a Trial of Ad26.COV2.S Covid-19 Vaccine

J. Sadoff, M. Le Gars, G. Shukarev, D. Heerwegh, C. Truyers, A.M. de Groot, J. Stoop, S. Tete, W. Van Damme, I. Leroux-Roels, P.-J. Berghmans, M. Kimmel, P. Van Damme, J. de Hoon, W. Smith, K.E. Stephenson, S.C. De Rosa, K.W. Cohen, M.J. McElrath, E. Cormier, G. Scheper, D.H. Barouch, J. Hendriks, F. Struyf, M. Douoguih, J. Van Hoof, and H. Schuitemaker

| Table 1. Characteristics of the Participants at Baseline.* |                           |                            |               |                  |  |  |
|------------------------------------------------------------|---------------------------|----------------------------|---------------|------------------|--|--|
| Characteristic                                             | Low-Dose<br>Vaccine Group | High-Dose<br>Vaccine Group | Placebo Group | All Participants |  |  |
| Cohort 1 (ages 18–55 yr)†                                  |                           |                            |               |                  |  |  |
| No. of participants                                        | 162                       | 158                        | 82            | 402              |  |  |
| Sex — no. (%)                                              |                           |                            |               |                  |  |  |
| Male                                                       | 78 (48)                   | 72 (46)                    | 40 (49)       | 190 (47)         |  |  |
| Female                                                     | 84 (52)                   | 85 (54)                    | 42 (51)       | 211 (52)         |  |  |
| Nonbinary                                                  | 0                         | 1 (1)                      | 0             | 1 (<1)           |  |  |
| Age — yr                                                   |                           |                            |               |                  |  |  |
| Mean                                                       | 36.1±10.1                 | 34.8±10.3                  | 35.4±10.0     | 35.4±10.2        |  |  |
| Range                                                      | 18-55                     | 19–55                      | 19-55         | 18-55            |  |  |
| Race or ethnic group — no. (%)‡                            |                           |                            |               |                  |  |  |
| White                                                      | 149 (92)                  | 145 (92)                   | 70 (85)       | 364 (91)         |  |  |
| Black                                                      | 4 (2)                     | 7 (4)                      | 9 (11)        | 20 (5)           |  |  |
| Asian                                                      | 5 (3)                     | 5 (3)                      | 0             | 10 (2)           |  |  |
| Native Hawaiian or other Pacific Islander                  | 1 (1)                     | 0                          | 0             | 1 (<1)           |  |  |
| American Indian or Alaska Native                           | 3 (2)                     | 0                          | 0             | 3 (1)            |  |  |
| Hispanic or Latino                                         | 8 (5)                     | 5 (3)                      | 4 (5)         | 17 (4)           |  |  |
| Multiple                                                   | 0                         | 1 (1)                      | 0             | 1 (<1)           |  |  |
| Unknown                                                    | 0                         | 0                          | 3 (4)         | 3 (1)            |  |  |
| Body-mass index§                                           | 24.5±3.3                  | 24.6±3.1                   | 24.5±3.0      | 24.6±3.2         |  |  |
| SARS-CoV-2 seropositive — no. (%)¶                         | 3 (2)                     | 2 (1)                      | 2 (2)         | 7 (2)            |  |  |
| Cohort 3 (age ≥65 yr)                                      |                           |                            |               |                  |  |  |
| No. of participants                                        | 161                       | 161                        | 81            | 403              |  |  |
| Sex — no. (%)                                              |                           |                            |               |                  |  |  |
| Male                                                       | 84 (52)                   | 79 (49)                    | 38 (47)       | 201 (50)         |  |  |
| Female                                                     | 77 (48)                   | 82 (51)                    | 43 (53)       | 202 (50)         |  |  |
| Age — yr                                                   |                           |                            |               |                  |  |  |
| Mean                                                       | 69.6±4.0                  | 70.0±4.2                   | 69.9±3.7      | 69.8±4.0         |  |  |
| Range                                                      | 65–83                     | 65–88                      | 65–79         | 65–88            |  |  |
| Race or ethnic group — no. (%)                             |                           |                            |               |                  |  |  |
| White                                                      | 158 (98)                  | 158 (98)                   | 81 (100)      | 397 (99)         |  |  |
| Black                                                      | 1 (1)                     | 2 (1)                      | 0             | 3 (1)            |  |  |
| American Indian or Alaska Native                           | 1 (1)                     | 0                          | 0             | 1 (<1)           |  |  |
| Hispanic or Latino                                         | 1 (1)                     | 2 (1)                      | 3 (4)         | 6 (1)            |  |  |
| Unknown                                                    | 1 (1)                     | 0                          | 0             | 1 (<1)           |  |  |
| Not reported                                               | 0                         | 1 (1)                      | 0             | 1 (<1)           |  |  |
| Body-mass index§                                           | 25.3±2.8                  | 25.5±2.7                   | 25.2±3.1      | 25.4±2.8         |  |  |
| SARS-CoV-2 seropositive — no. (%)                          | 1 (1)                     | 2 (1)                      | 1 (1)         | 4 (1)            |  |  |

- Low dose= 5×10<sup>10</sup> viral particles
- High dose=1×10<sup>11</sup> viral particles
- Most frequent solicited adverse events were fatigue, headache, myalgia, and injection-site pain
- Systemic adverse event: fever





- 83% of participants had detectable CD4+ T cell responses on day 15
- 67% in cohort 3
- CD8+ T cell responses were robust overall but slightly lower in cohort 3





C V<br/>V RCenter for Virology and Vaccine ResearchBeth Israel Deaconess Medical Center – Harvard Medical School

Beth Israel Lahey Health Beth Israel Deaconess Medical Center